Search results
Results from the WOW.Com Content Network
In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations.The idea is to choose a finite-dimensional space of candidate solutions (usually polynomials up to a certain degree) and a number of points in the domain (called collocation points), and to select that solution which satisfies the ...
The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:
The continuous problem is broken into discrete intervals; quadrature or numerical integration determines the weights and locations of representative points for the integral. The problem becomes a system of linear equations with equations and unknowns, and the underlying function is implicitly represented by an interpolation using the chosen ...
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
Many special functions appear as solutions of differential equations or integrals of elementary functions.Therefore, tables of integrals [1] usually include descriptions of special functions, and tables of special functions [2] include most important integrals; at least, the integral representation of special functions.
and the problem is, given the continuous kernel function and the function , to find the function .. An important case of these types of equation is the case when the kernel is a function only of the difference of its arguments, namely (,) = (), and the limits of integration are ±∞, then the right hand side of the equation can be rewritten as a convolution of the functions and and therefore ...
Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:
Let (,) be an integral kernel, and consider the homogeneous equation, the Fredholm integral equation, (,) =and the inhomogeneous equation (,) = ().The Fredholm alternative is the statement that, for every non-zero fixed complex number, either the first equation has a non-trivial solution, or the second equation has a solution for all ().