Search results
Results from the WOW.Com Content Network
In many cases, the repositories of time-series data will utilize compression algorithms to manage the data efficiently. [ 3 ] [ 4 ] Although it is possible to store time-series data in many different database types, the design of these systems with time as a key index is distinctly different from relational databases which reduce discrete ...
It can also be used to model biodiversity, as it would be difficult to gather actual data on all species in a given area. [5] Surrogate data may be used in forecasting. Data from similar series may be pooled to improve forecast accuracy. [6] Use of surrogate data may enable a model to account for patterns not seen in historical data. [7]
Panel data is the general class, a multidimensional data set, whereas a time series data set is a one-dimensional panel (as is a cross-sectional dataset). A data set may exhibit characteristics of both panel data and time series data. One way to tell is to ask what makes one data record unique from the other records.
X-13ARIMA-SEATS, successor to X-12-ARIMA and X-11, is a set of statistical methods for seasonal adjustment and other descriptive analysis of time series data that are implemented in the U.S. Census Bureau's software package. [3]
Ideally, unevenly spaced time series are analyzed in their unaltered form. However, most of the basic theory for time series analysis was developed at a time when limitations in computing resources favored an analysis of equally spaced data, since in this case efficient linear algebra routines can be used and many problems have an explicit ...
For example, time series are usually decomposed into: , the trend component at time t, which reflects the long-term progression of the series (secular variation). A trend exists when there is a persistent increasing or decreasing direction in the data. The trend component does not have to be linear. [1]
Once the seasonal influence is removed from this time series, the unemployment rate data can be meaningfully compared across different months and predictions for the future can be made. [3] When seasonal adjustment is not performed with monthly data, year-on-year changes are utilised in an attempt to avoid contamination with seasonality.
For example, in economics a regression to explain and predict money demand (how much people choose to hold in the form of the most liquid assets) could be conducted with either cross-sectional or time series data. A cross-sectional regression would have as each data point an observation on a particular individual's money holdings, income, and ...