Search results
Results from the WOW.Com Content Network
Let a be an integer that is not a square number and not −1. Write a = a 0 b 2 with a 0 square-free. Denote by S(a) the set of prime numbers p such that a is a primitive root modulo p. Then the conjecture states S(a) has a positive asymptotic density inside the set of primes. In particular, S(a) is infinite.
If g is a primitive root modulo p, then g is also a primitive root modulo all powers p k unless g p −1 ≡ 1 (mod p 2); in that case, g + p is. [14] If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a ...
For example, if n = 15, then λ(n) = 4 while () = and (()) =. There are four primitive λ-roots modulo 15, namely 2, 7, 8, and 13 as . The roots 2 and 8 are congruent to powers of each other and the roots 7 and 13 are congruent to powers of each other, but neither 7 nor 13 is congruent to a power of 2 or 8 and vice versa.
Prime-counting function: Number of primes less than or equal to a given number. Partition function: Order-independent count of ways to write a given positive integer as a sum of positive integers. Möbius μ function: Sum of the nth primitive roots of unity, it depends on the prime factorization of n. Prime omega functions; Chebyshev functions
If the modulus and conductor are equal the character is primitive, otherwise imprimitive. An imprimitive character is induced by the character for the smallest modulus: χ 16 , 9 {\displaystyle \chi _{16,9}} is induced from χ 8 , 5 {\displaystyle \chi _{8,5}} and χ 16 , 15 {\displaystyle \chi _{16,15}} and χ 8 , 7 {\displaystyle \chi _{8,7 ...
In number theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n; that is, a solution x to the equation (or congruence) ().
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The other primitive q-th roots of unity are the numbers where (a, q) = 1. Therefore, there are φ(q) primitive q-th roots of unity. Thus, the Ramanujan sum c q (n) is the sum of the n-th powers of the primitive q-th roots of unity. It is a fact [3] that the powers of ζ q are precisely the primitive roots for all the divisors of q. Example. Let ...