enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Detailed balance - Wikipedia

    en.wikipedia.org/wiki/Detailed_balance

    A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [13] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...

  3. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Since irreducible Markov chains with finite state spaces have a unique stationary distribution, the above construction is unambiguous for irreducible Markov chains. In ergodic theory , a measure-preserving dynamical system is called "ergodic" iff any measurable subset S {\displaystyle S} such that T − 1 ( S ) = S {\displaystyle T^{-1}(S)=S ...

  4. Balance equation - Wikipedia

    en.wikipedia.org/wiki/Balance_equation

    For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and = holds, then by summing over , the global balance equations are satisfied and is the stationary distribution of the process. [5]

  5. Perron–Frobenius theorem - Wikipedia

    en.wikipedia.org/wiki/Perron–Frobenius_theorem

    The theorem has a natural interpretation in the theory of finite Markov chains (where it is the matrix-theoretic equivalent of the convergence of an irreducible finite Markov chain to its stationary distribution, formulated in terms of the transition matrix of the chain; see, for example, the article on the subshift of finite type).

  6. Kolmogorov's criterion - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_criterion

    Consider this figure depicting a section of a Markov chain with states i, j, k and l and the corresponding transition probabilities. Here Kolmogorov's criterion implies that the product of probabilities when traversing through any closed loop must be equal, so the product around the loop i to j to l to k returning to i must be equal to the loop the other way round,

  7. Kolmogorov equations - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov_equations

    In the context of a continuous-time Markov process with jumps, see Kolmogorov equations (Markov jump process). In particular, in natural sciences the forward equation is also known as master equation. In the context of a diffusion process, for the backward Kolmogorov equations see Kolmogorov backward equations (diffusion).

  8. Continuous-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_Markov_chain

    A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix.

  9. Discrete-time Markov chain - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Markov_chain

    A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.