Search results
Results from the WOW.Com Content Network
The internal energy depends only on the internal state of the system and not on the particular choice from many possible processes by which energy may pass into or out of the system. It is a state variable, a thermodynamic potential, and an extensive property. [5] Thermodynamics defines internal energy macroscopically, for the body as a whole.
For thermodynamic processes of energy transfer without transfer of matter, the first law of thermodynamics is often expressed by the algebraic sum of contributions to the internal energy, , from all work, , done on or by the system, and the quantity of heat, , supplied or withdrawn from the system. [1]
In thermodynamics, the internal energy of a system is expressed in terms of pairs of conjugate variables such as temperature and entropy, pressure and volume, or chemical potential and particle number. In fact, all thermodynamic potentials are expressed in terms of conjugate pairs.
The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.
Internal Energy ΔU = + = Enthalpy ... where k B is the Boltzmann constant, and Ω denotes the volume of macrostate in the phase space or otherwise called ...
The concept of internal energy and its relationship to temperature. If a system has a definite temperature, then its total energy has three distinguishable components, termed kinetic energy (energy due to the motion of the system as a whole), potential energy (energy resulting from an externally imposed force field), and internal energy. The ...
Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.
The equilibrium state of a thermodynamic system is described by specifying its "state". The state of a thermodynamic system is specified by a number of extensive quantities, the most familiar of which are volume, internal energy, and the amount of each constituent particle (particle numbers). Extensive parameters are properties of the entire ...