enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  3. Diffusion - Wikipedia

    en.wikipedia.org/wiki/Diffusion

    Solving this equation, one obtained the time-dependent diffusion constant in the long-time limit and when the particle is significantly denser than the surrounding fluid, [20] = (/ ()) where k B is the Boltzmann constant; T is the absolute temperature.

  4. Non-Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Non-Newtonian_fluid

    For non-Newtonian fluid's viscosity, there are pseudoplastic, plastic, and dilatant flows that are time-independent, and there are thixotropic and rheopectic flows that are time-dependent. Three well-known time-dependent non-newtonian fluids which can be identified by the defining authors are the Oldroyd-B model [2], Walters’ Liquid B [3] and ...

  5. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    Before this point in time, a gradual variation in the concentration of A occurs along an axis, designated x, which joins the original compartments. This variation, expressed mathematically as -dC A /dx, where C A is the concentration of A. The negative sign arises because the concentration of A decreases as the distance x increases.

  6. Reaction rate constant - Wikipedia

    en.wikipedia.org/wiki/Reaction_rate_constant

    where A and B are reactants C is a product a, b, and c are stoichiometric coefficients,. the reaction rate is often found to have the form: = [] [] Here ⁠ ⁠ is the reaction rate constant that depends on temperature, and [A] and [B] are the molar concentrations of substances A and B in moles per unit volume of solution, assuming the reaction is taking place throughout the volume of the ...

  7. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    c(0,t) is the time-dependent concentration at the distance zero from the surface of the electrode. The above form simplifies to the conventional one (shown at the top of the article) when the concentration of the electroactive species at the surface is equal to that in the bulk.

  8. Time-dependent viscosity - Wikipedia

    en.wikipedia.org/wiki/Time-dependent_viscosity

    Time-dependent shear thickening behavior. Thixotropy: The longer a fluid is subjected to a shear force, the lower its viscosity. It is a time-dependent shear thinning behavior. Shear thickening: Similar to rheopecty, but independent of the passage of time. Shear thinning: Similar to thixotropy, but independent of the passage of time.

  9. Time of concentration - Wikipedia

    en.wikipedia.org/wiki/Time_of_concentration

    Time of concentration is a concept used in hydrology to measure the response of a watershed to a rain event. It is defined as the time needed for water to flow from the most remote point in a watershed to the watershed outlet. [1] It is a function of the topography, geology, and land use within the watershed.