Search results
Results from the WOW.Com Content Network
DNA helicases are frequently attracted to regions of DNA damage and are essential for cellular DNA replication, recombination, repair, and transcription. Chemical manipulation of their molecular processes can change the rate at which cancer cells divide, as well as, the efficiency of transactions and cellular homeostasis.
The replication fork is a structure that forms within the long helical DNA during DNA replication. It is produced by enzymes called helicases that break the hydrogen bonds that hold the DNA strands together in a helix.
The structure of the helicase has been solved at high resolution and indicates "inchworming" as the mechanism of translocation on single-stranded DNA. A Mexican-wave model has been proposed based on the changes in conformation of the helicase observed in the product versus substrate complex.
The process of semiconservative replication for the site of DNA replication is a fork-like DNA structure, the replication fork, where the DNA helix is open, or unwound, exposing unpaired DNA nucleotides for recognition and base pairing for the incorporation of free nucleotides into double-stranded DNA. [3]
DNA is a duplex formed by two anti-parallel strands. Following Meselson-Stahl, the process of DNA replication is semi-conservative, whereby during replication the original DNA duplex is separated into two daughter strands (referred to as the leading and lagging strand templates). Each daughter strand becomes part of a new DNA duplex.
Damaged DNA can act as a steric block to replicative polymerases, thereby leading to incomplete DNA replication or the formation of secondary DNA strand breaks at the sites of replication stalling. Incomplete DNA synthesis and DNA strand breaks are both potential sources of genomic instability. An arsenal of DNA repair mechanisms exists to ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The crystal structure of the Ter DNA-Tus protein complex (A) showing the nonblocking and the fork-blocking faces of Tus. (B) A cross-sectional view of the helicase-arresting surface. Replication of the DNA separating the opposing replication forks leaves the completed chromosomes joined as ‘catenanes’ or topologically interlinked circles ...