Ads
related to: how to sketch linear graphs of equations with variables x and 2
Search results
Results from the WOW.Com Content Network
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.
Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding ...
Using the diagram and summing the incident branches into x 1 this equation is seen to be satisfied. As all three variables enter these recast equations in a symmetrical fashion, the symmetry is retained in the graph by placing each variable at the corner of an equilateral triangle. Rotating the figure 120° simply permutes the indices.
A linear function is a polynomial function in which the variable x has degree at most one: [2] = +. Such a function is called linear because its graph, the set of all points (, ()) in the Cartesian plane, is a line. The coefficient a is called the slope of the function and of the line (see below).
Among other things, Xcas can solve equations (Figure 3) and differential equations (Figure 4) and draw graphs. There is a forum for questions about Xcas. There is a forum for questions about Xcas. [ 7 ]
If one of these equations can be solved for t, the expression obtained can be substituted into the other equation to obtain an equation involving x and y only: Solving = to obtain = and using this in = gives the explicit equation = (()), while more complicated cases will give an implicit equation of the form (,) =
A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]
Ads
related to: how to sketch linear graphs of equations with variables x and 2