enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    Even when a normal distribution model is appropriate to the data being analyzed, outliers are expected for large sample sizes and should not automatically be discarded if that is the case. [25] Instead, one should use a method that is robust to outliers to model or analyze data with naturally occurring outliers. [25]

  3. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    Where gap is the absolute difference between the outlier in question and the closest number to it. If Q > Q table, where Q table is a reference value corresponding to the sample size and confidence level, then reject the questionable point. Note that only one point may be rejected from a data set using a Q test.

  4. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set. The Grubbs test statistic is defined as = =, …, | ¯ | with ¯ and denoting the sample mean and standard deviation, respectively. The Grubbs test statistic is the largest absolute deviation from the sample mean in units of the sample standard deviation.

  5. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    Box-and-whisker plot with four mild outliers and one extreme outlier. In this chart, outliers are defined as mild above Q3 + 1.5 IQR and extreme above Q3 + 3 IQR. The interquartile range is often used to find outliers in data. Outliers here are defined as observations that fall below Q1 − 1.5 IQR or above Q3 + 1.5 IQR.

  6. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Given a sample set, one can compute the studentized residuals and compare these to the expected frequency: points that fall more than 3 standard deviations from the norm are likely outliers (unless the sample size is significantly large, by which point one expects a sample this extreme), and if there are many points more than 3 standard ...

  8. Category:Statistical outliers - Wikipedia

    en.wikipedia.org/wiki/Category:Statistical_outliers

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  9. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    For example, some may be suited to detecting local outliers, while others global, and methods have little systematic advantages over another when compared across many data sets. [ 21 ] [ 22 ] Almost all algorithms also require the setting of non-intuitive parameters critical for performance, and usually unknown before application.