enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The volume of a tetrahedron can be obtained in many ways. It can be given by using the formula of the pyramid's volume: =. where is the base' area and is the height from the base to the apex. This applies for each of the four choices of the base, so the distances from the apices to the opposite faces are inversely proportional to the areas of ...

  3. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    Given that is the base's area and is the height of a pyramid, the volume of a pyramid is: [25] =. The volume of a pyramid was recorded back in ancient Egypt, where they calculated the volume of a square frustum, suggesting they acquainted the volume of a square pyramid. [26]

  4. Elongated triangular pyramid - Wikipedia

    en.wikipedia.org/wiki/Elongated_triangular_pyramid

    An elongated triangular pyramid with edge length has a height, by adding the height of a regular tetrahedron and a triangular prism: [4] (+). Its surface area can be calculated by adding the area of all eight equilateral triangles and three squares: [2] (+), and its volume can be calculated by slicing it into a regular tetrahedron and a prism, adding their volume up: [2]: ((+)).

  5. Hyperpyramid - Wikipedia

    en.wikipedia.org/wiki/Hyperpyramid

    In geometry, a hyperpyramid is a generalisation of the normal pyramid to n dimensions. In the case of the pyramid one connects all vertices of the base (a polygon in a plane) to a point outside the plane, which is the peak. The pyramid's height is the distance of the peak from the plane. This construction gets generalised to n dimensions.

  6. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    The intuitive argument is based upon summing the total sector volume from that of infinitesimal triangular pyramids. Utilizing the pyramid (or cone) volume formula of = ′, where is the infinitesimal area of each pyramidal base (located on the surface of the sphere) and ′ is the height of each pyramid from its base to its apex (at the center ...

  7. Truncated tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_tetrahedron

    Given the edge length .The surface area of a truncated tetrahedron is the sum of 4 regular hexagons and 4 equilateral triangles' area, and its volume is: [2] =, =.. The dihedral angle of a truncated tetrahedron between triangle-to-hexagon is approximately 109.47°, and that between adjacent hexagonal faces is approximately 70.53°.

  8. Pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Pyramidal_number

    The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. [2] The numbers of points in the base and in layers parallel to the base are given by polygonal numbers of the given number of sides, while the numbers of points in each triangular side is ...

  9. Augmented triangular prism - Wikipedia

    en.wikipedia.org/wiki/Augmented_triangular_prism

    An augmented triangular prism with edge length has a surface area, calculated by adding six equilateral triangles and two squares' area: [2] +. Its volume can be obtained by slicing it into a regular triangular prism and an equilateral square pyramid, and adding their volume subsequently: [2] +.