Search results
Results from the WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
In organic chemistry, carbonyl reduction is the conversion of any carbonyl group, usually to an alcohol. It is a common transformation that is practiced in many ways. [1] Ketones, aldehydes, carboxylic acids, esters, amides, and acid halides - some of the most pervasive functional groups, -comprise carbonyl compounds.
Prolonged heavy alcohol use is a risk of ketoacidosis, especially in people with poor nutrition or a concurrent illness. [2] Pregnant women have high levels of hormones including glucagon and human placental lactogen that increase circulating free fatty acids which increases ketone production. [6]
The accumulation of acetyl-CoA in turn produces excess ketone bodies through ketogenesis. [11] The result is a rate of ketone production higher than the rate of ketone disposal, and a decrease in blood pH. [12] In extreme cases the resulting acetone can be detected in the patient's breath as a faint, sweet odor.
Ketosis is a metabolic state characterized by elevated levels of ketone bodies in the blood or urine. Physiological ketosis is a normal response to low glucose availability. . In physiological ketosis, ketones in the blood are elevated above baseline levels, but the body's acid–base homeostasis is maintain
Enantioselective ketone reductions convert prochiral ketones into chiral, non-racemic alcohols and are used heavily for the synthesis of stereodefined alcohols. [ 1 ] Carbonyl reduction, the net addition of H 2 across a carbon-oxygen double bond, is an important way to prepare alcohols.
The Wharton olefin synthesis or the Wharton reaction is a chemical reaction that involves the reduction of α,β-epoxy ketones using hydrazine to give allylic alcohols. [1] [2] [3] This reaction, introduced in 1961 by P. S. Wharton, is an extension of the Wolff–Kishner reduction.
The ketone which is present is mostly beta-hydroxybutyrate rather than acetoacetate resulting in only a weakly positive nitroprusside test. [2] People usually do not present with high blood sugar or sugar in the urine. [2] This can cause false negative results when testing urine ketones as they only measure acetoacetate.