enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Total dynamic head - Wikipedia

    en.wikipedia.org/wiki/Total_dynamic_head

    In fluid dynamics, total dynamic head (TDH) is the work to be done by a pump, per unit weight, per unit volume of fluid.TDH is the total amount of system pressure, measured in feet, where water can flow through a system before gravity takes over, and is essential for pump specification.

  3. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    With the help of these equations the head developed by a pump and the head utilised by a turbine can be easily determined. As the name suggests these equations were formulated by Leonhard Euler in the eighteenth century. [1] These equations can be derived from the moment of momentum equation when applied for a pump or a turbine.

  4. Net positive suction head - Wikipedia

    en.wikipedia.org/wiki/Net_positive_suction_head

    If an NPSH A is say 10 bar then the pump you are using will deliver exactly 10 bar more over the entire operational curve of a pump than its listed operational curve. Example: A pump with a max. pressure head of 8 bar (80 metres) will actually run at 18 bar if the NPSH A is 10 bar. i.e.: 8 bar (pump curve) plus 10 bar NPSH A = 18 bar.

  5. Affinity laws - Wikipedia

    en.wikipedia.org/wiki/Affinity_laws

    The affinity laws (also known as the "Fan Laws" or "Pump Laws") for pumps/fans are used in hydraulics, hydronics and/or HVAC to express the relationship between variables involved in pump or fan performance (such as head, volumetric flow rate, shaft speed) and power. They apply to pumps, fans, and hydraulic turbines. In these rotary implements ...

  6. Hydraulic head - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_head

    The static head of a pump is the maximum height (pressure) it can deliver. The capability of the pump at a certain RPM can be read from its Q-H curve (flow vs. height). Head is useful in specifying centrifugal pumps because their pumping characteristics tend to be independent of the fluid's density. There are generally four types of head:

  7. Centrifugal pump selection and characteristics - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_pump_selection...

    Discharge Head, is the net head obtained at the outlet of a pump. For a centrifugal pump, the discharge pressure depends on the suction or inlet pressure as well, along with the fluid’s density. Thus, for the same flow rate of the fluid, we may have different values of discharge pressure depending on the inlet pressure.

  8. Pressure head - Wikipedia

    en.wikipedia.org/wiki/Pressure_head

    Pressure head is a component of hydraulic head, in which it is combined with elevation head. When considering dynamic (flowing) systems, there is a third term needed: velocity head. Thus, the three terms of velocity head, elevation head, and pressure head appear in the head equation derived from the Bernoulli equation for incompressible fluids:

  9. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    Bernoulli's principle can be used to calculate the lift force on an airfoil, if the behaviour of the fluid flow in the vicinity of the foil is known. For example, if the air flowing past the top surface of an aircraft wing is moving faster than the air flowing past the bottom surface, then Bernoulli's principle implies that the pressure on the ...