Ads
related to: discrete and continuous variable biology examples worksheet 1- Lessons
Powerpoints, pdfs, and more to
support your classroom instruction.
- Free Resources
Download printables for any topic
at no cost to you. See what's free!
- Resources on Sale
The materials you need at the best
prices. Shop limited time offers.
- Worksheets
All the printables you need for
math, ELA, science, and much more.
- Lessons
Search results
Results from the WOW.Com Content Network
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
Because variables conforming only to nominal or ordinal measurements cannot be reasonably measured numerically, sometimes they are grouped together as categorical variables, whereas ratio and interval measurements are grouped together as quantitative variables, which can be either discrete or continuous, due to their numerical nature.
The Beverton–Holt model is a classic discrete-time population model which gives the expected number n t+1 (or density) of individuals in generation t + 1 as a function of the number of individuals in the previous generation, + = + /.
To define probability distributions for the specific case of random variables (so the sample space can be seen as a numeric set), it is common to distinguish between discrete and absolutely continuous random variables. In the discrete case, it is sufficient to specify a probability mass function assigning a probability to each possible outcome ...
Furthermore, it covers distributions that are neither discrete nor continuous nor mixtures of the two. An example of such distributions could be a mix of discrete and continuous distributions—for example, a random variable that is 0 with probability 1/2, and takes a random value from a normal distribution with probability 1/2.
continuous variable: A quantitative variable is continuous if its set of possible values is uncountable. Examples include temperature, exact height, exact age (including parts of a second). In practice, one can never measure a continuous variable to infinite precision, so continuous variables are sometimes approximated by discrete variables.
Discrete time is often employed when empirical measurements are involved, because normally it is only possible to measure variables sequentially. For example, while economic activity actually occurs continuously, there being no moment when the economy is totally in a pause, it is only possible to measure economic activity discretely.
Dichotomization is the special case of discretization in which the number of discrete classes is 2, which can approximate a continuous variable as a binary variable (creating a dichotomy for modeling purposes, as in binary classification). Discretization is also related to discrete mathematics, and is an important component of granular computing.
Ads
related to: discrete and continuous variable biology examples worksheet 1