Search results
Results from the WOW.Com Content Network
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
For example, if there are 10 grams of salt (the solute) dissolved in 1 litre of water (the solvent), this solution has a certain salt concentration . If one adds 1 litre of water to this solution, the salt concentration is reduced. The diluted solution still contains 10 grams of salt (0.171 moles of NaCl).
The term molality is formed in analogy to molarity which is the molar concentration of a solution. The earliest known use of the intensive property molality and of its adjectival unit, the now-deprecated molal, appears to have been published by G. N. Lewis and M. Randall in the 1923 publication of Thermodynamics and the Free Energies of Chemical Substances. [3]
l 3 n −1 In chemistry and related fields, the molar volume , symbol V m , [ 1 ] or V ~ {\displaystyle {\tilde {V}}} of a substance is the ratio of the volume ( V ) occupied by a substance to the amount of substance ( n ), usually at a given temperature and pressure .
This is especially common for measurement of compounds in biological fluids; for instance, the healthy level of potassium in the blood of a human is defined between 3.5 and 5.0 mEq/L. A certain amount of univalent ions provides the same amount of equivalents while the same amount of divalent ions provides twice the amount of equivalents.
The concentrations of standard solutions are normally expressed in units of moles per litre (mol/L, often abbreviated to M for molarity), moles per cubic decimetre (mol/dm 3), kilomoles per cubic metre (kmol/m 3), grams per milliliters (g/mL), or in terms related to those used in particular titrations (such as titres).
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. [1]