Search results
Results from the WOW.Com Content Network
Regular polyhedra are isohedral (face-transitive), isogonal (vertex-transitive), and isotoxal (edge-transitive). Quasiregular polyhedra are isogonal and isotoxal, but not isohedral; their duals are isohedral and isotoxal, but not isogonal. The dual of an isotoxal polyhedron is also an isotoxal polyhedron. (See the Dual polyhedron article.)
Similarly, a k-isohedral tiling has k separate symmetry orbits (it may contain m different face shapes, for m = k, or only for some m < k). [ 6 ] ("1-isohedral" is the same as "isohedral".) A monohedral polyhedron or monohedral tiling ( m = 1) has congruent faces, either directly or reflectively, which occur in one or more symmetry positions.
Pages in category "Isohedral tilings" The following 76 pages are in this category, out of 76 total. ... Octagonal tiling; Order-1 digonal tiling; Order-2 apeirogonal ...
An example is the sphinx tiling, an aperiodic tiling formed by a pentagonal rep-tile. [20] The sphinx may also tile the plane periodically, by fitting two sphinx tiles together to form a parallelogram and then tiling the plane by translation of this parallelogram, [ 20 ] a pattern that can be extended to any non-convex pentagon that has two ...
A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic . [ 3 ] The tilings obtained from an aperiodic set of tiles are often called aperiodic tilings , though strictly speaking it is the tiles themselves that are ...
A rhombic dodecahedron is an isohedral and isotoxal polyhedron A great icosidodecahedron is an isogonal and isotoxal star polyhedron A great rhombic triacontahedron is an isohedral and isotoxal star polyhedron The trihexagonal tiling is an isogonal and isotoxal tiling The rhombille tiling is an isohedral and isotoxal tiling with p6m (*632 ...
The problem of anisohedral tiling has been generalised by saying that the isohedral number of a tile is the lowest number orbits (equivalence classes) of tiles in any tiling of that tile under the action of the symmetry group of that tiling, and that a tile with isohedral number k is k-anisohedral.
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in the same or reverse order, and with the same angles between corresponding faces.