Search results
Results from the WOW.Com Content Network
The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.
Thales's theorem can be used to construct the tangent to a given circle that passes through a given point. In the figure at right, given circle k with centre O and the point P outside k, bisect OP at H and draw the circle of radius OH with centre H. OP is a diameter of this circle, so the triangles connecting OP to the points T and T′ where ...
An angle bisector divides the angle into two angles with equal measures. An angle only has one bisector. Each point of an angle bisector is equidistant from the sides of the angle. The 'interior' or 'internal bisector' of an angle is the line, half-line, or line segment that divides an angle of less than 180° into two equal angles.
The exterior angle theorem is not valid in spherical geometry nor in the related elliptical geometry. Consider a spherical triangle one of whose vertices is the North Pole and the other two lie on the equator. The sides of the triangle emanating from the North Pole (great circles of the sphere) both meet the equator at right angles, so this ...
Exterior angles are commonly used in Logo Turtle programs when drawing regular polygons. In a triangle, the bisectors of two exterior angles and the bisector of the other interior angle are concurrent (meet at a single point). [18]: 149 In a triangle, three intersection points, each of an external angle bisector with the opposite extended side ...
In geometry, a cevian is a line segment which joins a vertex of a triangle to a point on the opposite side of the triangle. [ 1 ] [ 2 ] Medians and angle bisectors are special cases of cevians. The name "cevian" comes from the Italian mathematician Giovanni Ceva , who proved a well-known theorem about cevians which also bears his name.
In many cases, triangles can be solved given three pieces of information some of which are the lengths of the triangle's medians, altitudes, or angle bisectors. Posamentier and Lehmann [ 7 ] list the results for the question of solvability using no higher than square roots (i.e., constructibility ) for each of the 95 distinct cases; 63 of these ...
If the incircle is tangent to the sides AB, BC, CD, DA at T 1, T 2, T 3, T 4 respectively, and if N 1, N 2, N 3, N 4 are the isotomic conjugates of these points with respect to the corresponding sides (that is, AT 1 = BN 1 and so on), then the Nagel point of the tangential quadrilateral is defined as the intersection of the lines N 1 N 3 and N ...