Search results
Results from the WOW.Com Content Network
DSB-SC is basically an amplitude modulation wave without the carrier, therefore reducing power waste, giving it a 50% efficiency. This is an increase compared to normal AM transmission (DSB) that has a maximum efficiency of 33.333%, since 2/3 of the power is in the carrier which conveys no useful information and both sidebands containing identical copies of the same information.
The power of an AM radio signal plotted against frequency. fc is the carrier frequency, fm is the maximum modulation frequency. In radio communications, a sideband is a band of frequencies higher than or lower than the carrier frequency, that are the result of the modulation process.
In the Armstrong method, the audio signal and the radio frequency carrier signal are applied to the balanced modulator to generate a double sideband suppressed carrier signal. The phase of this output signal is then shifted 90 degrees with respect to the original carrier. The balanced modulator output can either lead or lag the carrier's phase.
An alternate method of generation known as a Hartley modulator, named after R. V. L. Hartley, uses phasing to suppress the unwanted sideband. To generate an SSB signal with this method, two versions of the original signal are generated, mutually 90° out of phase for any single frequency within the operating bandwidth.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Now, compare to the DSB-SC used for the stereo subcarrier in FM broadcast radio. You couldn't add an AM carrier, and still stay within the other limits for FM. On the other hand, adding a DSB-SC (left-right) subcarrier to a baseband (left+right) gives the same result as switching between (left) and (right) at 38kHz.
The RBDS/RDS subcarrier was set to the third harmonic of the 19 kHz FM stereo pilot tone to minimize interference and intermodulation between the data signal, the stereo pilot and the 38 kHz DSB-SC stereo difference signal. (The stereo difference signal extends up 38 kHz + 15 kHz = 53 kHz, leaving 4 kHz for the lower sideband of the RDS signal.)
If the information to be transmitted (i.e., the baseband signal) is () and the sinusoidal carrier is () = (), where f c is the carrier's base frequency, and A c is the carrier's amplitude, the modulator combines the carrier with the baseband data signal to get the transmitted signal: [4] [citation needed]