enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    Example: To find 0.69, one would look down the rows to find 0.6 and then across the columns to 0.09 which would yield a probability of 0.25490 for a cumulative from mean table or 0.75490 from a cumulative table. To find a negative value such as -0.83, one could use a cumulative table for negative z-values [3] which yield a probability of 0.20327.

  3. Complementary event - Wikipedia

    en.wikipedia.org/wiki/Complementary_event

    The complement of an event A is usually denoted as A′, A c, A or A. Given an event, the event and its complementary event define a Bernoulli trial : did the event occur or not? For example, if a typical coin is tossed and one assumes that it cannot land on its edge, then it can either land showing "heads" or "tails."

  4. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  5. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The nines' complement of a decimal digit is the number that must be added to it to produce 9; the nines' complement of 3 is 6, the nines' complement of 7 is 2, and so on, see table. To form the nines' complement of a larger number, each digit is replaced by its nines' complement. Consider the following subtraction problem:

  6. Schur complement - Wikipedia

    en.wikipedia.org/wiki/Schur_complement

    The Schur complement is named after Issai Schur [1] who used it to prove Schur's lemma, although it had been used previously. [2] Emilie Virginia Haynsworth was the first to call it the Schur complement. [3] The Schur complement is a key tool in the fields of numerical analysis, statistics, and matrix analysis.

  7. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    In probability theory, the law (or formula) of total probability is a fundamental rule relating marginal probabilities to conditional probabilities. It expresses the total probability of an outcome which can be realized via several distinct events , hence the name.

  8. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.

  9. Rule of three (statistics) - Wikipedia

    en.wikipedia.org/wiki/Rule_of_three_(statistics)

    The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr( X = 0) = 0.05 and hence (1− p ) n = .05 so n ln (1– p ) = ln .05 ≈ −2.996.