enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    It is used to find the probability that a statistic is observed below, above, or between values on the standard normal distribution, and by extension, any normal distribution. Since probability tables cannot be printed for every normal distribution, as there are an infinite variety of normal distributions, it is common practice to convert a ...

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}e^{-{\frac ...

  4. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Gaussian functions are widely used in statistics to describe the normal distributions, in signal processing to define Gaussian filters, in image processing where two-dimensional Gaussians are used for Gaussian blurs, and in mathematics to solve heat equations and diffusion equations and to define the Weierstrass transform.

  5. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    However, this use is not standard among probabilists and statisticians. In other sources, "probability distribution function" may be used when the probability distribution is defined as a function over general sets of values or it may refer to the cumulative distribution function, or it may be a probability mass function (PMF) rather than the ...

  6. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    In statistics, the Q-function is the tail distribution function of the standard normal distribution. [ 1 ] [ 2 ] In other words, Q ( x ) {\displaystyle Q(x)} is the probability that a normal (Gaussian) random variable will obtain a value larger than x {\displaystyle x} standard deviations.

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

  8. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Dirichlet distribution, a generalization of the beta distribution. The Ewens's sampling formula is a probability distribution on the set of all partitions of an integer n, arising in population genetics. The Balding–Nichols model; The multinomial distribution, a generalization of the binomial distribution.

  9. Gaussian measure - Wikipedia

    en.wikipedia.org/wiki/Gaussian_measure

    Gaussian measures with mean = are known as centered Gaussian measures. The Dirac measure δ μ {\displaystyle \delta _{\mu }} is the weak limit of γ μ , σ 2 n {\displaystyle \gamma _{\mu ,\sigma ^{2}}^{n}} as σ → 0 {\displaystyle \sigma \to 0} , and is considered to be a degenerate Gaussian measure ; in contrast, Gaussian measures with ...