enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deeper learning - Wikipedia

    en.wikipedia.org/wiki/Deeper_Learning

    The blog articles are written pro bono by major educational writers who advocate for the paradigm shift to Deeper Learning as well as by a balance of school leaders, teachers, professional learning specialists and others who are incorporating deeper learning practices into their curricula, instruction, assessment and system change plans.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Major advances in this field can result from advances in learning algorithms (such as deep learning), computer hardware, and, less-intuitively, the availability of high-quality training datasets. [1] High-quality labeled training datasets for supervised and semi-supervised machine learning algorithms are usually difficult and expensive to ...

  5. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  6. Foundation model - Wikipedia

    en.wikipedia.org/wiki/Foundation_model

    A foundation model, also known as large X model (LxM), is a machine learning or deep learning model that is trained on vast datasets so it can be applied across a wide range of use cases. [1] Generative AI applications like Large Language Models are often examples of foundation models. [1]

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Furthermore, researchers involved in exploring learning algorithms for neural networks are gradually uncovering generic principles that allow a learning machine to be successful. For example, Bengio and LeCun (2007) wrote an article regarding local vs non-local learning, as well as shallow vs deep architecture. [230]

  8. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    An autoencoder consisting of an encoder and a decoder is a paradigm for deep learning architectures. An example is provided by Hinton and Salakhutdinov [24] where the encoder uses raw data (e.g., image) as input and produces feature or representation as output and the decoder uses the extracted feature from the encoder as input and reconstructs ...

  9. Intelligent tutoring system - Wikipedia

    en.wikipedia.org/wiki/Intelligent_tutoring_system

    There are many examples of ITSs being used in both formal education and professional settings in which they have demonstrated their capabilities and limitations. There is a close relationship between intelligent tutoring, cognitive learning theories and design; and there is ongoing research to improve the effectiveness of ITS.