Search results
Results from the WOW.Com Content Network
The Tonelli–Shanks algorithm (referred to by Shanks as the RESSOL algorithm) is used in modular arithmetic to solve for r in a congruence of the form r 2 ≡ n (mod p), where p is a prime: that is, to find a square root of n modulo p.
This factor base is usually chosen to be the number −1 and the first r primes starting with 2. From the point of view of efficiency, we want this factor base to be small, but in order to solve the discrete log for a large group we require the factor base to be (relatively) large. In practical implementations of the algorithm, those ...
The discrete logarithm is just the inverse operation. For example, consider the equation 3 k ≡ 13 (mod 17). From the example above, one solution is k = 4, but it is not the only solution. Since 3 16 ≡ 1 (mod 17)—as follows from Fermat's little theorem—it also follows that if n is an integer then 3 4+16n ≡ 3 4 × (3 16) n ≡ 13 × 1 n ...
Fermat's little theorem: If p is prime and does not divide a, then a p−1 ≡ 1 (mod p). Euler's theorem: If a and m are coprime, then a φ(m) ≡ 1 (mod m), where φ is Euler's totient function. A simple consequence of Fermat's little theorem is that if p is prime, then a −1 ≡ a p−2 (mod p) is the multiplicative inverse of 0 < a < p.
X ≡ 6 (mod 11) has common solutions since 5,7 and 11 are pairwise coprime. A solution is given by X = t 1 (7 × 11) × 4 + t 2 (5 × 11) × 4 + t 3 (5 × 7) × 6. where t 1 = 3 is the modular multiplicative inverse of 7 × 11 (mod 5), t 2 = 6 is the modular multiplicative inverse of 5 × 11 (mod 7) and t 3 = 6 is the modular multiplicative ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.