enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antoine equation - Wikipedia

    en.wikipedia.org/wiki/Antoine_equation

    The usage of the pre-SI units has only historic reasons and originates directly from Antoine's original publication. It is however easy to convert the parameters to different pressure and temperature units. For switching from degrees Celsius to kelvin it is sufficient to subtract 273.15 from the C parameter.

  3. Conversion of scales of temperature - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_scales_of...

    Converting units of temperature differences (also referred to as temperature deltas) is not the same as converting absolute temperature values, and different formulae must be used. To convert a delta temperature from degrees Fahrenheit to degrees Celsius, the formula is {ΔT} °F = ⁠ 9 / 5 ⁠ {ΔT} °C.

  4. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer

  5. Temperature - Wikipedia

    en.wikipedia.org/wiki/Temperature

    It makes good sense, for example, to say of the extensive variable U, or of the extensive variable S, that it has a density per unit volume or a quantity per unit mass of the system, but it makes no sense to speak of the density of temperature per unit volume or quantity of temperature per unit mass of the system. On the other hand, it makes no ...

  6. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    Since heat density is proportional to temperature in a homogeneous medium, the heat equation is still obeyed in the new units. Suppose that a body obeys the heat equation and, in addition, generates its own heat per unit volume (e.g., in watts/litre - W/L) at a rate given by a known function q varying in space and time. [5]

  7. Temperature coefficient - Wikipedia

    en.wikipedia.org/wiki/Temperature_coefficient

    Residual magnetic flux density or B r changes with temperature and it is one of the important characteristics of magnet performance. Some applications, such as inertial gyroscopes and traveling-wave tubes (TWTs), need to have constant field over a wide temperature range. The reversible temperature coefficient (RTC) of B r is defined as:

  8. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    In the walls of buildings the above formula can be used to derive the formula commonly used to calculate the heat through building components. Architects and engineers call the resulting values either the U-Value or the R-Value of a construction assembly like a wall.

  9. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    Doing this work, air inside the cylinder will cool to below the target temperature. To return to the target temperature (still with a free piston), the air must be heated, but is no longer under constant volume, since the piston is free to move as the gas is reheated. This extra heat amounts to about 40% more than the previous amount added.