enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...

  3. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  4. Arithmetic–geometric mean - Wikipedia

    en.wikipedia.org/wiki/Arithmeticgeometric_mean

    In mathematics, the arithmeticgeometric mean (AGM or agM [1]) of two positive real numbers x and y is the mutual limit of a sequence of arithmetic means and a sequence of geometric means. The arithmeticgeometric mean is used in fast algorithms for exponential, trigonometric functions, and other special functions, as well as some ...

  5. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    The arithmetic mean, or less precisely the average, of a list of n numbers x 1, x 2, . . . , x n is the sum of the numbers divided by n: + + +. The geometric mean is similar, except that it is only defined for a list of nonnegative real numbers, and uses multiplication and a root in place of addition and division:

  6. Geometric mean - Wikipedia

    en.wikipedia.org/wiki/Geometric_mean

    In this case 14:9 is exactly the arithmetic mean of : and : =:, since 14 is the average of 16 and 12, while the precise geometric mean is :, but the two different means, arithmetic and geometric, are approximately equal because both numbers are sufficiently close to each other (a difference of less than 2%).

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    An arithmetico-geometric series is a series that has terms which are each the product of an element of an arithmetic progression with the corresponding element of a geometric progression. Example: 3 + 5 2 + 7 4 + 9 8 + 11 16 + ⋯ = ∑ n = 0 ∞ ( 3 + 2 n ) 2 n . {\displaystyle 3+{5 \over 2}+{7 \over 4}+{9 \over 8}+{11 \over 16}+\cdots =\sum ...

  8. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  9. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    For instance, the sequence 5, 7, 9, 11, 13, 15, . . . is an arithmetic progression with a common difference of 2. If the initial term of an arithmetic progression is a 1 {\displaystyle a_{1}} and the common difference of successive members is d {\displaystyle d} , then the n {\displaystyle n} -th term of the sequence ( a n {\displaystyle a_{n ...