enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Homogentisate 1,2-dioxygenase - Wikipedia

    en.wikipedia.org/wiki/Homogentisate_1,2-dioxygenase

    HGD appears in the metabolic pathway of tyrosine and phenylalanine degradation once the molecule homogentisate is produced. Homogentisate reacts with HGD to produce maleylacetoacetate, which then is further used in the metabolic pathway. HGD requires the use of Fe 2+ and O 2 in order to cleave the aromatic ring of homogentisate. [2]

  3. Aromatic amino acid - Wikipedia

    en.wikipedia.org/wiki/Aromatic_amino_acid

    In plants, the shikimate pathway first leads to the formation of chorismate, which is the precursor of phenylalanine, tyrosine, and tryptophan. These aromatic amino acids are the precursors of many secondary metabolites , all essential to a plant's biological functions, such as the hormones salicylate and auxin .

  4. Biopterin-dependent aromatic amino acid hydroxylase - Wikipedia

    en.wikipedia.org/wiki/Biopterin-dependent...

    These enzymes primarily hydroxylate the amino acids L-phenylalanine, L-tyrosine, and L-tryptophan, respectively. The AAAH enzymes are functionally and structurally related proteins which act as rate-limiting catalysts for important metabolic pathways. [1]

  5. Shikimate pathway - Wikipedia

    en.wikipedia.org/wiki/Shikimate_pathway

    The pathway starts with two substrates, phosphoenol pyruvate and erythrose-4-phosphate, and ends with chorismate (chrorismic acid), a substrate for the three aromatic amino acids. The fifth enzyme involved is the shikimate kinase , an enzyme that catalyzes the ATP -dependent phosphorylation of shikimate to form shikimate 3-phosphate (shown in ...

  6. Phenylalanine hydroxylase - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine_hydroxylase

    Phenylalanine hydroxylase (PAH) (EC 1.14.16.1) is an enzyme that catalyzes the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine.PAH is one of three members of the biopterin-dependent aromatic amino acid hydroxylases, a class of monooxygenase that uses tetrahydrobiopterin (BH 4, a pteridine cofactor) and a non-heme iron for catalysis.

  7. Fumarylacetoacetate hydrolase - Wikipedia

    en.wikipedia.org/wiki/Fumarylacetoacetate_hydrolase

    Fumarylacetoacetate hydrolase (FAH) is a protein homodimer which cleaves fumarylacetoacetate at its carbon-carbon bond during a hydrolysis reaction. [8] As a critical enzyme in phenylalanine and tyrosine metabolism, 4-Fumarylacetoacetate hydrolase catalyzes the final step in the catabolism of 4-fumarylacetoacetate and water into acetoacetate, fumarate, and H + respectively. [9]

  8. Phenylpropanoids metabolism - Wikipedia

    en.wikipedia.org/wiki/Phenylpropanoids_metabolism

    In plants, all phenylpropanoids are derived from the amino acids phenylalanine and tyrosine. Phenylalanine ammonia-lyase (PAL, a.k.a. phenylalanine/tyrosine ammonia-lyase) is an enzyme that transforms L-phenylalanine and tyrosine into trans-cinnamic acid and p-coumaric acid, respectively.

  9. Phenylalanine - Wikipedia

    en.wikipedia.org/wiki/Phenylalanine

    Phenylalanine is a precursor for tyrosine, the monoamine neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline), and the biological pigment melanin. It is encoded by the messenger RNA codons UUU and UUC. Phenylalanine is found naturally in the milk of mammals.