Search results
Results from the WOW.Com Content Network
These enzymes primarily hydroxylate the amino acids L-phenylalanine, L-tyrosine, and L-tryptophan, respectively. The AAAH enzymes are functionally and structurally related proteins which act as rate-limiting catalysts for important metabolic pathways. [1]
In plants, the shikimate pathway first leads to the formation of chorismate, which is the precursor of phenylalanine, tyrosine, and tryptophan. These aromatic amino acids are the precursors of many secondary metabolites , all essential to a plant's biological functions, such as the hormones salicylate and auxin .
Phenylalanine ball and stick model spinning. Phenylalanine (symbol Phe or F) [3] is an essential α-amino acid with the formula C 9 H 11 NO 2.It can be viewed as a benzyl group substituted for the methyl group of alanine, or a phenyl group in place of a terminal hydrogen of alanine.
Phenylalanine hydroxylase (PAH) (EC 1.14.16.1) is an enzyme that catalyzes the hydroxylation of the aromatic side-chain of phenylalanine to generate tyrosine.PAH is one of three members of the biopterin-dependent aromatic amino acid hydroxylases, a class of monooxygenase that uses tetrahydrobiopterin (BH 4, a pteridine cofactor) and a non-heme iron for catalysis.
English: Errors of Metabolism: PKU—phenylketonuria, HT-2—tyrosinemia type II, HT-3—tyrosinemia type III, AKU—alkaptonuria, HT-1—tyrosinemia type I. Substrates/products: Phe—phenylalanine, Tyr—tyrosine, pHPP—p-hydroxyphenylpyruvate, hga—homogentisate, maa—maleylacetoacetate, faa—fumarylacetoacetate. Enzymes:
The shikimate pathway (shikimic acid pathway) is a seven-step metabolic pathway used by bacteria, archaea, fungi, algae, some protozoans, and plants for the biosynthesis of folates and aromatic amino acids (tryptophan, phenylalanine, and tyrosine). This pathway is not found in mammals.
In plants, all phenylpropanoids are derived from the amino acids phenylalanine and tyrosine. Phenylalanine ammonia-lyase (PAL, a.k.a. phenylalanine/tyrosine ammonia-lyase) is an enzyme that transforms L-phenylalanine and tyrosine into trans-cinnamic acid and p-coumaric acid, respectively.
4-Hydroxyphenylpyruvic acid (4-HPPA) is an intermediate in the metabolism of the amino acid phenylalanine. The aromatic side chain of phenylalanine is hydroxylated by the enzyme phenylalanine hydroxylase to form tyrosine. The conversion from tyrosine to 4-HPPA is in turn catalyzed by tyrosine aminotransferase. [2]