Search results
Results from the WOW.Com Content Network
In contrast to structural steel, rebar steel grades are not harmonized yet across Europe, each country having their own national standards. However, some standardization of specification and testing methods exist under EN 10080 and EN ISO 15630: BS EN 10080: Steel for the reinforcement of concrete. Weldable reinforcing steel. General. (2005)
The EN 10080: Steel for the reinforcement of concrete is a European Standard. This standard is referenced by EN 1992 . This standard specifies general requirements and definitions for performance characteristics of steel reinforcement suitable for welding, which is used for reinforcement of concrete structures, supplied as finished products:
ASTM A500 is a standard specification published by the ASTM for cold-formed welded and seamless carbon steel structural tubing in round, square, and rectangular shapes. It is commonly specified in the US for hollow structural sections, but the more stringent CSA G40.21 is preferred in Canada.
EN 10027-1 steel grade designation system. European standard steel grade names fall into two categories: [1] Steel specified by purpose of use and mechanical properties. Steel specified by chemical composition. The inclusion of a letter 'G' before the code indicates the steel is specified in the form of a casting.
A36 steel has a Poisson's ratio of 0.26 and a shear modulus of 11,500 ksi (79.3 GPa). [ 7 ] A36 steel in plates, bars, and shapes with a thickness of less than 8 inches (203 millimeters) has a minimum yield strength of 36 ksi (250 MPa ) and ultimate tensile strength of 58–80 ksi (400–550 MPa).
Regular strength Class "A" mischmetal thickness weight coated regular strength steel would be designated MA2. Aluminium-clad steel is designated as "AW". Aluminium-clad steel offers increased corrosion protection and conductivity at the expense of reduced tensile strength. Aluminium-clad steel is commonly specified for coastal applications.
The reinforcement is often steel rebar (mesh, spiral, bars and other forms). Structural fibers of various materials are available. Concrete can also be prestressed (reducing tensile stress ) using internal steel cables (tendons), allowing for beams or slabs with a longer span than is practical with reinforced concrete alone.
The applied reinforcement yield stress is = 500 N/mm². The mass density of the reinforcing bars is 7800 kg/m 3. In the table is the computed brittle material stress. is the optimised amount of reinforcement.