enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Qubit - Wikipedia

    en.wikipedia.org/wiki/Qubit

    The so-called T 1 lifetime and T 2 dephasing time are a time to characterize the physical implementation and represent their sensitivity to noise. A higher time does not necessarily mean that one or the other qubit is better suited for quantum computing because gate times and fidelities need to be considered, too.

  3. One-way quantum computer - Wikipedia

    en.wikipedia.org/wiki/One-way_quantum_computer

    The purpose of quantum computing focuses on building an information theory with the features of quantum mechanics: instead of encoding a binary unit of information (), which can be switched to 1 or 0, a quantum binary unit of information (qubit) can simultaneously turn to be 0 and 1 at the same time, thanks to the phenomenon called superposition.

  4. Physical and logical qubits - Wikipedia

    en.wikipedia.org/wiki/Physical_and_logical_qubits

    [1] [2] A logical qubit is a physical or abstract qubit that performs as specified in a quantum algorithm or quantum circuit [3] subject to unitary transformations, has a long enough coherence time to be usable by quantum logic gates (c.f. propagation delay for classical logic gates). [1] [4] [5]

  5. List of quantum processors - Wikipedia

    en.wikipedia.org/wiki/List_of_quantum_processors

    This is instead achieved through the number of logical qubits or benchmarking metrics such as quantum volume, ... (1 qubit) 93.8 (2 qubits) 86.0 (3 qubits) 6 [39 ...

  6. Quantum register - Wikipedia

    en.wikipedia.org/wiki/Quantum_register

    The number of dimensions of the Hilbert spaces depends on what kind of quantum systems the register is composed of. Qubits are 2-dimensional complex spaces ( C 2 {\displaystyle \mathbb {C} ^{2}} ), while qutrits are 3-dimensional complex spaces ( C 3 {\displaystyle \mathbb {C} ^{3}} ), etc.

  7. Quantum logic gate - Wikipedia

    en.wikipedia.org/wiki/Quantum_logic_gate

    Example: The Hadamard transform on a 3-qubit register | . Here the amplitude for each measurable state is 12. The probability to observe any state is the square of the absolute value of the measurable states amplitude, which in the above example means that there is one in four that we observe any one of the individual four cases.

  8. Deferred measurement principle - Wikipedia

    en.wikipedia.org/wiki/Deferred_measurement_principle

    The classical bits control if the 1-qubit X and Z gates are executed, allowing teleportation. [ 1 ] By moving the measurement to the end, the 2-qubit controlled -X and -Z gates need to be applied, which requires both qubits to be near (i.e. at a distance where 2-qubit quantum effects can be controlled), and thus limits the distance of the ...

  9. Quantum error correction - Wikipedia

    en.wikipedia.org/wiki/Quantum_error_correction

    A 5-qubit code is the smallest possible code that protects a single logical qubit against single-qubit errors. A generalisation of the technique used by Steane , to develop the 7-qubit code from the classical [7, 4] Hamming code , led to the construction of an important class of codes called the CSS codes , named for their inventors: Robert ...