enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bacterial transcription - Wikipedia

    en.wikipedia.org/wiki/Bacterial_transcription

    The σ-factor dissociates from the core enzyme and elongation proceeds. This signals the end of the initiation phase and the holoenzyme is now in core polymerase form. [4] Abortive cycling occurs prior to sigma factor release. The promoter region is a prime regulator of transcription. Promoter regions regulate transcription of all genes within ...

  3. Sigma factor - Wikipedia

    en.wikipedia.org/wiki/Sigma_factor

    A sigma factor (σ factor or specificity factor) is a protein needed for initiation of transcription in bacteria. [1] [2] It is a bacterial transcription initiation factor that enables specific binding of RNA polymerase (RNAP) to gene promoters. It is homologous to archaeal transcription factor B and to eukaryotic factor TFIIB. [3]

  4. Abortive initiation - Wikipedia

    en.wikipedia.org/wiki/Abortive_initiation

    Abortive initiation is a normal process of transcription and occurs both in vitro and in vivo. [2] After each nucleotide-addition step in initial transcription, RNA polymerase, stochastically, can proceed on the pathway toward promoter escape (productive initiation) or can release the RNA product and revert to the RNA polymerase-promoter open complex (abortive initiation).

  5. General transcription factor - Wikipedia

    en.wikipedia.org/wiki/General_transcription_factor

    The transcription preinitiation complex is a large complex of proteins that is necessary for the transcription of protein-coding genes in eukaryotes and archaea. It attaches to the promoter of the DNA (e.i., TATA box) and helps position the RNA polymerase II to the gene transcription start sites, denatures the DNA, and then starts transcription.

  6. Transcription preinitiation complex - Wikipedia

    en.wikipedia.org/wiki/Transcription_pre...

    Transcription preinitiation complex, represented by the central cluster of proteins, causes RNA polymerase to bind to target DNA site. The PIC is able to bind both the promoter sequence near the gene to be transcribed and an enhancer sequence in a different part of the genome, allowing enhancer sequences to regulate a gene distant from it.

  7. Transcription (biology) - Wikipedia

    en.wikipedia.org/wiki/Transcription_(biology)

    Core promoters combined with general transcription factors are sufficient to direct transcription initiation, but generally have low basal activity. [7] Other important cis-regulatory modules are localized in DNA regions that are distant from the transcription start sites. These include enhancers, silencers, insulators and tethering elements. [8]

  8. Initiation factor - Wikipedia

    en.wikipedia.org/wiki/Initiation_factor

    The prokaryotic initiation factor, IF3, assists with start site specificity, as well as mRNA binding. [2] [3] This is in comparison with the eukaryotic initiation factor, eIF1, who also performs these functions. The elF1 structure is similar to the C-terminal domain of IF3, as they each contain a five-stranded beta sheet against two alpha helices.

  9. Activator (genetics) - Wikipedia

    en.wikipedia.org/wiki/Activator_(genetics)

    [2] [3] If the regulatory sequence is located far away, the DNA will loop over itself (DNA looping) in order for the bound activator to interact with the transcription machinery at the promoter site. [2] [3] In prokaryotes, multiple genes can be transcribed together , and are thus controlled under the same regulatory sequence. [2]