enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    For a function of n variables, the number of negative eigenvalues of the Hessian matrix at a critical point is called the index of the critical point. A non-degenerate critical point is a local maximum if and only if the index is n, or, equivalently, if the Hessian matrix is negative definite; it is a local minimum if the index is zero, or ...

  3. Morse theory - Wikipedia

    en.wikipedia.org/wiki/Morse_theory

    A less trivial example of a degenerate critical point is the origin of the monkey saddle. The index of a non-degenerate critical point of is the dimension of the largest subspace of the tangent space to at on which the Hessian is negative definite.

  4. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    Otherwise it is non-degenerate, and called a Morse critical point of . The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4]

  5. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f .)

  6. Stationary phase approximation - Wikipedia

    en.wikipedia.org/wiki/Stationary_phase_approximation

    The second statement is that when f is a Morse function, so that the singular points of f are non-degenerate and isolated, then the question can be reduced to the case n = 1. In fact, then, a choice of g can be made to split the integral into cases with just one critical point P in each.

  7. Milnor number - Wikipedia

    en.wikipedia.org/wiki/Milnor_number

    If the image of f is now perturbed in a certain stable way the isolated degenerate singularity at 0 will split up into other isolated singularities which are non-degenerate. The number of such isolated non-degenerate singularities will be the number of points that have been infinitesimally glued. Precisely, another function germ g which is non ...

  8. Cerf theory - Wikipedia

    en.wikipedia.org/wiki/Cerf_theory

    Cerf showed that a one-parameter family of functions between two Morse functions can be approximated by one that is Morse at all but finitely many degenerate times. The degeneracies involve a birth/death transition of critical points, as in the above example when, at t = 0 {\displaystyle t=0} , an index 0 and index 1 critical point are created ...

  9. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Further, critical points can be classified using the definiteness of the Hessian matrix: If the Hessian is positive definite at a critical point, then the point is a local minimum; if the Hessian matrix is negative definite, then the point is a local maximum; finally, if indefinite, then the point is some kind of saddle point.