Search results
Results from the WOW.Com Content Network
The fundamental function of this part of the ear is to gather sound energy and deliver it to the eardrum. Resonances of the external ear selectively boost sound pressure with frequency in the range 2–5 kHz. [2] The pinna as a result of its asymmetrical structure is able to provide further cues about the elevation from which the sound originated.
The focus of this article is a comprehensive view of modeling a neural network (technically neuronal network based on neuron model). Once an approach based on the perspective and connectivity is chosen, the models are developed at microscopic (ion and neuron), mesoscopic (functional or population), or macroscopic (system) levels.
The spiking neuron model by Nossenson & Messer [72] [73] [74] produces the probability of the neuron firing a spike as a function of either an external or pharmacological stimulus. [72] [73] [74] The model consists of a cascade of a receptor layer model and a spiking neuron model, as shown in Fig 4. The connection between the external stimulus ...
The FitzHugh–Nagumo model (FHN) describes a prototype of an excitable system (e.g., a neuron). It is an example of a relaxation oscillator because, if the external stimulus I ext {\displaystyle I_{\text{ext}}} exceeds a certain threshold value, the system will exhibit a characteristic excursion in phase space , before the variables v ...
Diagram of how confocal microscopy works. Confocal microscopy is the microscopic procedure of choice for examining neuron structures as it produces sharp images with improved resolution and decreased signal-to-noise ratio. The specific way this microscopy works allows one to look at one confocal plane at a time, which is optimal when viewing ...
English: Complete neuron cell diagram. Neurons (also known as neurones and nerve cells) are electrically excitable cells in the nervous system that process and transmit information. In vertebrate animals, neurons are the core components of the brain, spinal cord and peripheral nerves.
The "signal" input to each neuron is a number, specifically a linear combination of the outputs of the connected neurons in the previous layer. The signal each neuron outputs is calculated from this number, according to its activation function. The behavior of the network depends on the strengths (or weights) of the connections between neurons.
The NEURON environment is a self-contained environment allowing interface through its GUI or via scripting with hoc or python. The NEURON simulation engine is based on a Hodgkin–Huxley type model using a Borg–Graham formulation. Several examples of models written in NEURON are available from the online database ModelDB. [26]