Search results
Results from the WOW.Com Content Network
In computing, octuple precision is a binary floating-point-based computer number format that occupies 32 bytes (256 bits) in computer memory. This 256-bit octuple precision is for applications requiring results in higher than quadruple precision. The range greatly exceeds what is needed to describe all known physical limitations within the ...
SHA-256 hash function. Smart contracts use 256- or 257-bit integers; 256-bit words for the Ethereum Virtual Machine. "We realize that a 257 bits byte is quite unusual, but for smart contracts it is ok to have at least 256 bits numbers. The leading VM for smart contracts, Ethereum VM, introduced this practice and other blockchain VMs followed." [8]
[citation needed] Thus it made sense to have few registers and use the main memory as an extended pool of extra registers. In machines with a relatively wide 16-bit address bus and comparatively narrow 8-bit data bus, calculating an address in memory could take several cycles. The zero page's one-byte address was smaller and therefore faster to ...
In 8-bit CP/M versions it is located in the first 256 bytes of memory, hence its name. The equivalent structure in DOS is the Program Segment Prefix (PSP), a 256-byte (page-sized) structure, which is by default located exactly before offset 0 of the program's load segment, rather than in segment 0.
Similarly, a page frame is the smallest fixed-length contiguous block of physical memory into which memory pages are mapped by the operating system. [ 1 ] [ 2 ] [ 3 ] A transfer of pages between main memory and an auxiliary store, such as a hard disk drive , is referred to as paging or swapping.
1,024 bits (128 bytes) - RAM capacity of the Atari 2600: 1,288 bits (161 bytes) – approximate maximum capacity of a standard magnetic stripe card: 2 11: 2,048 bits (256 bytes) – RAM capacity of the stock Altair 8800: 2 12: 4,096 bits (512 bytes) – typical sector size, and minimum space allocation unit on computer storage volumes, with ...
Earlier DDC implementations used simple 8-bit data offset when communicating with the EDID memory in the monitor, limiting the storage size to 2 8 bytes = 256 bytes, but allowing the use of cheap 2-Kbit EEPROMs. In E-DDC, a special I²C addressing scheme was introduced, in which multiple 256-byte segments could be selected.
The zero-page, the first 256 bytes of memory that were used as pseudo-registers, could now be moved to any page in main memory using the B(ase page) register. The stack register was widened from 8 to 16-bits using a similar page register, SPH (stack pointer high), allowing the stack to be moved out of page one and to grow to larger sizes.