enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclid - Wikipedia

    en.wikipedia.org/wiki/Euclid

    Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.

  3. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.

  4. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate is the fifth postulate in Euclid's Elements and a distinctive axiom in Euclidean geometry.

  5. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  6. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Based on ancient Greek methods, an axiomatic system is a formal description of a way to establish the mathematical truth that flows from a fixed set of assumptions. Although applicable to any area of mathematics, geometry is the branch of elementary mathematics in which this method has most extensively been successfully applied.

  7. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Examples of compass-only constructions include Napoleon's problem. It is impossible to take a square root with just a ruler, so some things that cannot be constructed with a ruler can be constructed with a compass; but (by the Poncelet–Steiner theorem ) given a single circle and its center, they can be constructed.

  8. Euclid's Optics - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Optics

    Euclid postulated that visual rays proceed from the eyes onto objects, and that the different visual properties of the objects were determined by how the visual rays struck them. Here the red square is an actual object, while the yellow plane shows how the object is perceived. 1573 edition in Italian

  9. Timeline of geometry - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_geometry

    1733 – Giovanni Gerolamo Saccheri studies what geometry would be like if Euclid's fifth postulate were false, 1796 – Carl Friedrich Gauss proves that the regular 17-gon can be constructed using only a compass and straightedge; 1797 – Caspar Wessel associates vectors with complex numbers and studies complex number operations in geometrical ...