enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Numerical analysis - Wikipedia

    en.wikipedia.org/wiki/Numerical_analysis

    The field of numerical analysis predates the invention of modern computers by many centuries. Linear interpolation was already in use more than 2000 years ago. Many great mathematicians of the past were preoccupied by numerical analysis, [5] as is obvious from the names of important algorithms like Newton's method, Lagrange interpolation polynomial, Gaussian elimination, or Euler's method.

  3. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Finite difference methods for heat equation and related PDEs: FTCS scheme (forward-time central-space) — first-order explicit; Crank–Nicolson method — second-order implicit; Finite difference methods for hyperbolic PDEs like the wave equation: Lax–Friedrichs method — first-order explicit; Lax–Wendroff method — second-order explicit

  4. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.

  5. Numerical method - Wikipedia

    en.wikipedia.org/wiki/Numerical_method

    Necessary conditions for a numerical method to effectively approximate (,) = are that and that behaves like when . So, a numerical method is called consistent if and only if the sequence of functions { F n } n ∈ N {\displaystyle \left\{F_{n}\right\}_{n\in \mathbb {N} }} pointwise converges to F {\displaystyle F} on the set S {\displaystyle S ...

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.

  7. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    Their algorithm is applicable to higher-order derivatives. A method based on numerical inversion of a complex Laplace transform was developed by Abate and Dubner. [21] An algorithm that can be used without requiring knowledge about the method or the character of the function was developed by Fornberg. [4]

  8. Applied mathematics - Wikipedia

    en.wikipedia.org/wiki/Applied_mathematics

    A numerical solution to the heat equation on a pump casing model using the finite element method.. Historically, applied mathematics consisted principally of applied analysis, most notably differential equations; approximation theory (broadly construed, to include representations, asymptotic methods, variational methods, and numerical analysis); and applied probability.

  9. Numerical stability - Wikipedia

    en.wikipedia.org/wiki/Numerical_stability

    One such method is the famous Babylonian method, which is given by x k+1 = (x k + 2/x k)/2. Another method, called "method X", is given by x k+1 = (x k 2 − 2) 2 + x k. [note 1] A few iterations of each scheme are calculated in table form below, with initial guesses x 0 = 1.4 and x 0 = 1.42.