enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    (It may be necessary to calculate the stress to which it is subjected, for example.) On the right, the red cylinder has become the free body. In figure 2, the interest has shifted to just the left half of the red cylinder and so now it is the free body on the right. The example illustrates the context sensitivity of the term "free body".

  3. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth. The parallelogram of forces is a method for solving (or visualizing) the results of applying two forces to an object. When more than two forces are involved, the geometry is no longer a parallelogram, but the same principles apply to a polygon of forces.

  4. Resultant force - Wikipedia

    en.wikipedia.org/wiki/Resultant_force

    In physics and engineering, a resultant force is the single force and associated torque obtained by combining a system of forces and torques acting on a rigid body via vector addition. The defining feature of a resultant force, or resultant force-torque, is that it has the same effect on the rigid body as the original system of forces. [ 1 ]

  5. Aerodynamic force - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_force

    The aerodynamic force is the resultant vector from adding the lift vector, perpendicular to the flow direction, and the drag vector, parallel to the flow direction. Forces on an aerofoil . In fluid mechanics , an aerodynamic force is a force exerted on a body by the air (or other gas ) in which the body is immersed, and is due to the relative ...

  6. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    The resulting vector is sometimes called the resultant vector of a and b. The addition may be represented graphically by placing the tail of the arrow b at the head of the arrow a, and then drawing an arrow from the tail of a to the head of b. The new arrow drawn represents the vector a + b, as illustrated below: [7] The addition of two vectors ...

  7. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    A common example of a screw is the wrench associated with a force acting on a rigid body. Let P be the point of application of the force F and let P be the vector locating this point in a fixed frame. The wrench W = (F, P × F) is a screw.

  8. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    In a d-dimensional space, Hodge star takes a k-vector to a (d–k)-vector; thus only in d = 3 dimensions is the result an element of dimension one (3–2 = 1), i.e. a vector. For example, in d = 4 dimensions, the cross product of two vectors has dimension 4–2 = 2, giving a bivector. Thus, only in three dimensions does cross product define an ...

  9. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .