enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fluorescence spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_spectroscopy

    Additionally, Fluorescence spectroscopy can be adapted to the microscopic level using microfluorimetry. In analytical chemistry, fluorescence detectors are used with HPLC. In the field of water research, fluorescence spectroscopy can be used to monitor water quality by detecting organic pollutants. [14]

  3. Jablonski diagram - Wikipedia

    en.wikipedia.org/wiki/Jablonski_diagram

    Jablonski diagram including vibrational levels for absorbance, non-radiative decay, and fluorescence. When a molecule absorbs a photon, the photon energy is converted and increases the molecule's internal energy level. Likewise, when an excited molecule releases energy, it can do so in the form of a photon.

  4. Fluorescence - Wikipedia

    en.wikipedia.org/wiki/Fluorescence

    Fluorescence in several wavelengths can be detected by an array detector, to detect compounds from HPLC flow. Also, TLC plates can be visualized if the compounds or a coloring reagent is fluorescent. Fluorescence is most effective when there is a larger ratio of atoms at lower energy levels in a Boltzmann distribution. There is, then, a higher ...

  5. Kasha's rule - Wikipedia

    en.wikipedia.org/wiki/Kasha's_rule

    A corollary of Kasha's rule is the Vavilov rule, which states that the quantum yield of luminescence is generally independent of the excitation wavelength. [4] [7] This can be understood as a consequence of the tendency – implied by Kasha's rule – for molecules in upper states to relax to the lowest excited state non-radiatively.

  6. Fluorescence in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Fluorescence_in_the_life...

    A simplified Jablonski diagram illustrating the change of energy levels.. The principle behind fluorescence is that the fluorescent moiety contains electrons which can absorb a photon and briefly enter an excited state before either dispersing the energy non-radiatively or emitting it as a photon, but with a lower energy, i.e., at a longer wavelength (wavelength and energy are inversely ...

  7. Photoluminescence - Wikipedia

    en.wikipedia.org/wiki/Photoluminescence

    These techniques can be combined with microscopy, to map the intensity (confocal microscopy) or the lifetime (fluorescence-lifetime imaging microscopy) of the photoluminescence across a sample (e.g. a semiconducting wafer, or a biological sample that has been marked with fluorescent molecules). Modulated photoluminescence is a specific method ...

  8. Pump–probe microscopy - Wikipedia

    en.wikipedia.org/wiki/Pump–probe_microscopy

    This ensures that fluorescence is only generated within the focus of a laser beam, as the intensity outside of this plane is insufficient to excite a photoelectron. [1] However, this microscope modality is inherently limited by the number of biological molecules that can undergo both two-photon excitation and fluorescence. [2]

  9. Stern–Volmer relationship - Wikipedia

    en.wikipedia.org/wiki/Stern–Volmer_relationship

    Processes such as fluorescence and phosphorescence are examples of intramolecular deactivation processes. An intermolecular deactivation is where the presence of another chemical species can accelerate the decay rate of a chemical in its excited state. In general, this process can be represented by a simple equation: