Search results
Results from the WOW.Com Content Network
Oxalate (systematic IUPAC name: ethanedioate) is an anion with the chemical formula C 2 O 2− 4. This dianion is colorless. It occurs naturally, including in some foods. It forms a variety of salts, for example sodium oxalate (Na 2 C 2 O 4), and several esters such as dimethyl oxalate ((CH 3) 2 C 2 O 4). It is a conjugate base of oxalic acid.
It occurs naturally in many foods. Excessive ingestion of oxalic acid or prolonged skin contact can be dangerous. Oxalic acid has much greater acid strength than acetic acid. It is a reducing agent [9] and its conjugate bases hydrogen oxalate (HC 2 O − 4) and oxalate (C 2 O 2− 4) are chelating agents for metal cations.
The oxidation states are also maintained in articles of the elements (of course), and systematically in the table {{Infobox element/symbol-to-oxidation-state}}
In enzymology, an oxalate oxidase (EC 1.2.3.4) is an oxalate degrading enzyme that catalyzes the chemical reaction: oxalate + O 2 + 2 H + ⇌ {\displaystyle \rightleftharpoons } 2 CO 2 + H 2 O 2 The 3 substrates of this enzyme are oxalate , O 2 , and H + , whereas its two products are CO 2 and H 2 O 2 .
Oxalate oxidase (Enzyme Commission number EC 1.2.3.4 [2] )occurs mainly in plants. It can degrade oxalic acid into carbon dioxide and hydrogen peroxide. [3]Oxalate decarboxylase (OXDC,EC 4.1.1.2) is a kind of oxalate degrading enzyme containing Mn 2+, [4] found mainly in fungi or some bacteria.
This equation is the equation of a straight line for as a function of pH with a slope of () volt (pH has no units). This equation predicts lower E h {\displaystyle E_{h}} at higher pH values. This is observed for the reduction of O 2 into H 2 O, or OH − , and for reduction of H + into H 2 .
Natural phenols are a class of molecules found in abundance in plants. Many common foods contain rich sources of polyphenols which have antioxidant properties only in test tube studies. As interpreted by the Linus Pauling Institute, dietary polyphenols have little or no direct antioxidant food value following digestion. [7]
Oxalyl-CoA decarboxylase is extremely important for the elimination of ingested oxalates found in human foodstuffs like coffee, tea, and chocolate, [2] and the ingestion of such foods in the absence of Oxalobacter formigenes in the gut can result in kidney disease or even death as a result of oxalate poisoning. [3]