Search results
Results from the WOW.Com Content Network
The result is that countercurrent exchange can achieve a greater amount of heat or mass transfer than parallel under otherwise similar conditions. See: flow arrangement. Countercurrent exchange when set up in a circuit or loop can be used for building up concentrations, heat, or other properties of flowing liquids.
Fish exchange gases by pulling oxygen-rich water through their mouths and pumping it over their gills. Within the gill filaments, capillary blood flows in the opposite direction to the water, causing counter-current exchange. The gills push the oxygen-poor water out through openings in the sides of the pharynx.
Fish exchange gases by pulling oxygen-rich water through their mouths and pumping it over their gills. In some fish, capillary blood flows in the opposite direction to the water, causing countercurrent exchange. The gills push the oxygen-poor water out through openings in the sides of the pharynx.
Fish exchange gases by pulling oxygen-rich water through their mouths and pumping it over their gills. Capillary blood in the gills flows in the opposite direction to the water, resulting in efficient countercurrent exchange. The gills push the oxygen-poor water out through openings in the sides of the pharynx.
Most species employ a countercurrent exchange system to enhance the diffusion of substances in and out of the gill, with blood and water flowing in opposite directions to each other. The gills are composed of comb-like filaments, the gill lamellae, which help increase their surface area for oxygen exchange. [5]
Gills use a countercurrent exchange system that increases the efficiency of oxygen-uptake from the water. [ 56 ] [ 57 ] [ 58 ] Fresh oxygenated water taken in through the mouth is uninterruptedly "pumped" through the gills in one direction, while the blood in the lamellae flows in the opposite direction, creating the countercurrent blood and ...
The pulmonates have lost their gills [1] and adapted the mantle cavity into a pallial lung. The lung has a single opening on the right side, called the pneumostome, which either remains permanently open, or opens and closes as the animal breathes. The roof of the lung is highly vascularised, and it is through this surface that gas exchange occurs.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Counter-current_heat_exchange&oldid=90579097"