enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spent nuclear fuel - Wikipedia

    en.wikipedia.org/wiki/Spent_nuclear_fuel

    For instance, the use of MOX fuel (239 Pu in a 238 U matrix) is likely to lead to the production of more 241 Am and heavier nuclides than a uranium/thorium based fuel (233 U in a 232 Th matrix). For highly enriched fuels used in marine reactors and research reactors , the isotope inventory will vary based on in-core fuel management and reactor ...

  3. Nuclear reprocessing - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reprocessing

    The first large-scale nuclear reactors were built during World War II.These reactors were designed for the production of plutonium for use in nuclear weapons.The only reprocessing required, therefore, was the extraction of the plutonium (free of fission-product contamination) from the spent natural uranium fuel.

  4. Advanced reprocessing of spent nuclear fuel - Wikipedia

    en.wikipedia.org/wiki/Advanced_reprocessing_of...

    The first reprocessing approach is based on the PUREX (Plutonium Uranium Reduction EXtraction) process, which is the standard and mature technology applied worldwide to recover uranium and plutonium from spent nuclear fuel at industrial scale. Following the dissolution of the spent fuel in nitric acid and the removal of uranium and plutonium ...

  5. PUREX - Wikipedia

    en.wikipedia.org/wiki/PUREX

    Reprocessing of spent nuclear fuel by the PUREX method, first developed in the 1940s to produce plutonium for nuclear weapons, [1] was demonstrated commercially in Belgium to partially re-fuel a LWR in the 1960s. [2] This aqueous chemical process continues to be used commercially to separate reactor grade plutonium (RGPu) for reuse as MOX fuel ...

  6. Long-lived fission product - Wikipedia

    en.wikipedia.org/wiki/Long-lived_fission_product

    The high short-term radioactivity of spent nuclear fuel is primarily from fission products with short half-life.The radioactivity in the fission product mixture is mostly due to short-lived isotopes such as 131 I and 140 Ba, after about four months 141 Ce, 95 Zr/ 95 Nb and 89 Sr constitute the largest contributors, while after about two or three years the largest share is taken by 144 Ce/ 144 ...

  7. Nuclear fuel cycle - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fuel_cycle

    The lifecycle of fuel in the present US system. If put in one place the total inventory of spent nuclear fuel generated by the commercial fleet of power stations in the United States, would stand 7.6 metres (25 ft) tall and be 91 metres (300 ft) on a side, approximately the footprint of one American football field.

  8. High-level waste - Wikipedia

    en.wikipedia.org/wiki/High-level_waste

    High-level waste is the highly radioactive waste material resulting from the reprocessing of spent nuclear fuel, including liquid waste produced directly in reprocessing and any solid material derived from such liquid waste that contains fission products in sufficient concentrations; and other highly radioactive material that is determined, consistent with existing law, to require permanent ...

  9. Nuclear fuel - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fuel

    The radiation hazard from spent nuclear fuel declines as its radioactive components decay, but remains high for many years. For example 10 years after removal from a reactor, the surface dose rate for a typical spent fuel assembly still exceeds 10,000 rem/hour, resulting in a fatal dose in just minutes. [20]