enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ideogram (text-to-image model) - Wikipedia

    en.wikipedia.org/wiki/Ideogram_(text-to-image_model)

    Ideogram was founded in 2022 by Mohammad Norouzi, William Chan, Chitwan Saharia, and Jonathan Ho to develop a better text-to-image model. [3]It was first released with its 0.1 model on August 22, 2023, [4] after receiving $16.5 million in seed funding, which itself was led by Andreessen Horowitz and Index Ventures.

  3. Text-to-image model - Wikipedia

    en.wikipedia.org/wiki/Text-to-image_model

    An image conditioned on the prompt an astronaut riding a horse, by Hiroshige, generated by Stable Diffusion 3.5, a large-scale text-to-image model first released in 2022. A text-to-image model is a machine learning model which takes an input natural language description and produces an image matching that description.

  4. Text-to-image personalization - Wikipedia

    en.wikipedia.org/wiki/Text-to-image_personalization

    Text-to-Image personalization is a task in deep learning for computer graphics that augments pre-trained text-to-image generative models. In this task, a generative model that was trained on large-scale data (usually a foundation model ), is adapted such that it can generate images of novel, user-provided concepts.

  5. Flux (text-to-image model) - Wikipedia

    en.wikipedia.org/wiki/Flux_(text-to-image_model)

    Flux (also known as FLUX.1) is a text-to-image model developed by Black Forest Labs, based in Freiburg im Breisgau, Germany. Black Forest Labs were founded by former employees of Stability AI. As with other text-to-image models, Flux generates images from natural language descriptions, called prompts.

  6. DALL-E - Wikipedia

    en.wikipedia.org/wiki/DALL-E

    DALL-E was revealed by OpenAI in a blog post on 5 January 2021, and uses a version of GPT-3 [5] modified to generate images.. On 6 April 2022, OpenAI announced DALL-E 2, a successor designed to generate more realistic images at higher resolutions that "can combine concepts, attributes, and styles". [6]

  7. Stable Diffusion - Wikipedia

    en.wikipedia.org/wiki/Stable_Diffusion

    Diagram of the latent diffusion architecture used by Stable Diffusion The denoising process used by Stable Diffusion. The model generates images by iteratively denoising random noise until a configured number of steps have been reached, guided by the CLIP text encoder pretrained on concepts along with the attention mechanism, resulting in the desired image depicting a representation of the ...

  8. Diffusion model - Wikipedia

    en.wikipedia.org/wiki/Diffusion_model

    DALL-E 2 is a 3.5-billion cascaded diffusion model that generates images from text by "inverting the CLIP image encoder", the technique which they termed "unCLIP". The unCLIP method contains 4 models: a CLIP image encoder, a CLIP text encoder, an image decoder, and a "prior" model (which can be a diffusion model, or an autoregressive model).

  9. Category:Text-to-image generation - Wikipedia

    en.wikipedia.org/wiki/Category:Text-to-image...

    Pages in category "Text-to-image generation" The following 22 pages are in this category, out of 22 total. This list may not reflect recent changes. ...