Search results
Results from the WOW.Com Content Network
which can be used to represent the imaginary unit and hence all complex numbers using 2×2 real matrices, see matrix representation of complex numbers. Just as with the real numbers, a real matrix may fail to have a real square root, but have a square root with complex-valued entries. Some matrices have no square root.
That is, denoting each complex number by the real matrix of the linear transformation on the Argand diagram (viewed as the real vector space ), affected by complex -multiplication on . Thus, an m × n {\displaystyle m\times n} matrix of complex numbers could be well represented by a 2 m × 2 n {\displaystyle 2m\times 2n} matrix of real numbers.
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
The rational univariate representation or RUR is a representation of the solutions of a zero-dimensional polynomial system over the rational numbers which has been introduced by F. Rouillier. [10] A RUR of a zero-dimensional system consists in a linear combination x 0 of the variables, called separating variable, and a system of equations [11]
In mathematics, the complex conjugate of a complex number is the number with an equal real part, and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
under which addition and multiplication of complex numbers and matrices correspond to each other. For example, 2-by-2 rotation matrices represent the multiplication with some complex number of absolute value 1, as above. A similar interpretation is possible for quaternions [77] and Clifford algebras in general.
Since non-real complex roots come in conjugate pairs, there are an even number of them; But a polynomial of odd degree has an odd number of roots; Therefore some of them must be real. This requires some care in the presence of multiple roots; but a complex root and its conjugate do have the same multiplicity (and this lemma is not
The rational canonical form is determined by the elementary divisors of A; these can be immediately read off from a matrix in Jordan form, but they can also be determined directly for any matrix by computing the Smith normal form, over the ring of polynomials, of the matrix (with polynomial entries) XI n − A (the same one whose determinant ...