Search results
Results from the WOW.Com Content Network
Antibiotic resistance can be introduced artificially into a microorganism through laboratory protocols, sometimes used as a selectable marker to examine the mechanisms of gene transfer or to identify individuals that absorbed a piece of DNA that included the resistance gene and another gene of interest. [162]
Tetracycline-controlled gene expression is based upon the mechanism of resistance to tetracycline antibiotic treatment found in gram-negative bacteria. In nature, the P tet promoter expresses TetR (the repressor) and TetA, the protein that pumps tetracycline antibiotic out of the cell. [2]
Antibiotic inactivation: bacteria create proteins that can prevent damage caused by antibiotics, they can do this in two ways. First, inactivating or modifying the antibiotic so that it can no longer interact with its target. Second, degrading the antibiotic directly. [7] Multidrug efflux pumps: The use of transporter proteins to expel the ...
Drug, toxin, or chemical resistance is a consequence of evolution and is a response to pressures imposed on any living organism. Individual organisms vary in their sensitivity to the drug used and some with greater fitness may be capable of surviving drug treatment.
The antibiotic resistance genes found on the plasmids confer resistance to most of the antibiotic classes used nowadays, for example, beta-lactams, fluoroquinolones and aminoglycosides. [ 10 ] It is very common for the resistance genes or entire resistance cassettes to be re-arranged on the same plasmid or be moved to a different plasmid or ...
The resistome was first used to describe the resistance capabilities of bacteria preventing the effectiveness of antibiotics . [4] [5] Although antibiotics and their accompanying antibiotic resistant genes come from natural habitats, before next-generation sequencing, most studies of antibiotic resistance had been confined to the laboratory. [6]
[12] [13] In combination with zinc, PBT2 has been shown to reverse antibiotic resistance for a number of clinically significant bacterial pathogens, including Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus (MRSA), group A Streptococcus (GAS), and vancomycin-resistant Enterococcus (VRE) both in vitro and in a mouse ...
In clinical medicine, antibiotics are most frequently prescribed on the basis of a person's symptoms and medical guidelines.This method of antibiotic selection is called empiric therapy, [1] and it is based on knowledge about what bacteria cause an infection, and to what antibiotics bacteria may be sensitive or resistant. [1]