Search results
Results from the WOW.Com Content Network
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
The method of approach to steady state has also been used to analyze the change in messenger RNA levels when synthesis or degradation changes, and a model has also been reported in which the plateau principle is used to connect the change in messenger RNA synthesis to the expected change in protein synthesis and concentration as a function of time.
In biochemistry, control coefficients [1] are used to describe how much influence a given reaction step has on the flux or concentration of the species at steady state.This can be accomplished experimentally by changing the expression level of a given enzyme and measuring the resulting changes in flux and metabolite levels.
The steady-state approximation holds that the concentration of the catalyst-substrate complex is not changing over time; the total concentration of this complex remains low as it is whisked away almost immediately after formation. A steady-state rate law contains all of the rate constants and species required to go from starting material to ...
For the overall reaction, the rates of change of the concentration of the intermediates •CH 3 and CH 3 CO• are zero, according to the steady-state approximation, which is used to account for the rate laws of chain reactions. [6] d[•CH 3]/dt = k 1 [CH 3 CHO] – k 2 [•CH 3][CH 3 CHO] + k 3 [CH 3 CO•] - 2k 4 [•CH 3] 2 = 0
In pharmacokinetics, steady state refers to the situation where the overall intake of a drug is fairly in dynamic equilibrium with its elimination. In practice, it is generally considered that once regular dosing of a drug is started, steady state is reached after 3 to 5 times its half-life. In steady state and in linear pharmacokinetics, AUC ...