Search results
Results from the WOW.Com Content Network
A titration curve is a curve in graph the x-coordinate of which represents the volume of titrant added since the beginning of the titration, and the y-coordinate of which represents the concentration of the analyte at the corresponding stage of the titration (in an acid–base titration, the y-coordinate usually represents the pH of the solution).
The analytical (total) concentration of a reactant R at the i th titration point is given by = + [] + where R 0 is the initial amount of R in the titration vessel, v 0 is the initial volume, [R] is the concentration of R in the burette and v i is the volume added. The burette concentration of a reactant not present in the burette is taken to be ...
The term also has two other, conflicting meanings. In titration, the titer is the ratio of actual to nominal concentration of a titrant, e.g. a titer of 0.5 would require 1/0.5 = 2 times more titrant than nominal. This is to compensate for possible degradation of the titrant solution.
An example of an alkalimetric titration involving a strong acid is as follows: H 2 SO 4 + 2 OH − → SO 4 2-+ 2 H 2 O. In this case, the strong acid (H 2 SO 4) is neutralized by the base until all of the acid has reacted. This allows the viewer to calculate the concentration of the acid from the volume of the standard base that is used.
Likewise, it is used to calculate lipophilic efficiency in evaluating the quality of research compounds, where the efficiency for a compound is defined as its potency, via measured values of pIC 50 or pEC 50, minus its value of log P. [27] Drug permeability in brain capillaries (y axis) as a function of partition coefficient (x axis) [28]
Ammonium ion concentration in the acid solution, and thus the amount of nitrogen in the sample, is measured via titration. If boric acid (or some other weak acid) was used, direct acid–base titration is done with a strong acid of known concentration. HCl or H 2 SO 4 can be used.
The rate of a reaction is the concentration of substrate disappearing (or product produced) per unit time (mol L −1 s −1). The % purity is 100% × (specific activity of enzyme sample / specific activity of pure enzyme). The impure sample has lower specific activity because some of the mass is not actually enzyme.
For a strong acid-strong base titration monitored by pH, we have at any i'th point in the titration = [+] [] where K w is the water autoprotolysis constant.. If titrating an acid of initial volume and concentration [+] with base of concentration [], then at any i'th point in the titration with titrant volume ,