Search results
Results from the WOW.Com Content Network
APOS Theory takes a constructivist view towards mathematical learning. Implementations of APOS Theory in classrooms typically use the ACE Teaching Cycle, a pedagogical strategy with three chronological components: activities, classroom discussion, and exercises. Implementations also often use mathematical programming languages, most commonly ISETL.
Wolpert and Macready give two NFL theorems that are closely related to the folkloric theorem. In their paper, they state: We have dubbed the associated results NFL theorems because they demonstrate that if an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems.
Logic-mathematical skills combine with all the other intelligences to facilitate complex problem solving and creation such as environmental engineering and scientists (naturalist); symphonies (music); public sculptures (visual-spatial) and choreography/ movement analysis (kinesthetic).
This is a list of mathematical logic topics. For traditional syllogistic logic, see the list of topics in logic . See also the list of computability and complexity topics for more theory of algorithms .
Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power.
Inductive logic programming has adopted several different learning settings, the most common of which are learning from entailment and learning from interpretations. [16] In both cases, the input is provided in the form of background knowledge B, a logical theory (commonly in the form of clauses used in logic programming), as well as positive and negative examples, denoted + and respectively.
In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with free variables.. What is now usually called classical algebraic logic focuses on the identification and algebraic description of models appropriate for the study of various logics (in the form of classes of algebras that constitute the algebraic semantics for these deductive systems) and connected ...
Logical reasoning is a form of thinking that is concerned with arriving at a conclusion in a rigorous way. [1] This happens in the form of inferences by transforming the information present in a set of premises to reach a conclusion.