enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's second law, in modern form, states that the time derivative of the momentum is the force: =. If the mass m {\displaystyle m} does not change with time, then the derivative acts only upon the velocity, and so the force equals the product of the mass and the time derivative of the velocity, which is the acceleration: [ 21 ] F = m d v d t ...

  3. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    Newton's second law of motion states that the rate of change of a body's momentum is equal to the net force acting on it. Momentum depends on the frame of reference , but in any inertial frame it is a conserved quantity, meaning that if a closed system is not affected by external forces, its total momentum does not change.

  4. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    The application of Newton's second law for variable mass allows impulse and momentum to be used as analysis tools for jet- or rocket-propelled vehicles. In the case of rockets, the impulse imparted can be normalized by unit of propellant expended, to create a performance parameter, specific impulse .

  5. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  6. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    While angular momentum total conservation can be understood separately from Newton's laws of motion as stemming from Noether's theorem in systems symmetric under rotations, it can also be understood simply as an efficient method of calculation of results that can also be otherwise arrived at directly from Newton's second law, together with laws ...

  7. Variable-mass system - Wikipedia

    en.wikipedia.org/wiki/Variable-mass_system

    It can be confusing to try to apply Newton's second law of motion directly to such a system. [1] [2] Instead, the time dependence of the mass m can be calculated by rearranging Newton's second law and adding a term to account for the momentum carried by mass entering or leaving the system. The general equation of variable-mass motion is written as

  8. Classical mechanics - Wikipedia

    en.wikipedia.org/wiki/Classical_mechanics

    So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle. Once independent relations for each force acting on a particle are available, they can be substituted into Newton's second law to obtain an ordinary differential equation, which is called the equation of motion.

  9. Newton-second - Wikipedia

    en.wikipedia.org/wiki/Newton-second

    The newton-second (also newton second; symbol: N⋅s or N s) [1] is the unit of impulse in the International System of Units (SI). It is dimensionally equivalent to the momentum unit kilogram-metre per second (kg⋅m/s). One newton-second corresponds to a one-newton force applied for one second.