Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
This statistics -related article is a stub. You can help Wikipedia by expanding it.
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
It is remarkable that the sum of squares of the residuals and the sample mean can be shown to be independent of each other, using, e.g. Basu's theorem.That fact, and the normal and chi-squared distributions given above form the basis of calculations involving the t-statistic:
Structural equation modeling (SEM) is a diverse set of methods used by scientists for both observational and experimental research. SEM is used mostly in the social and behavioral science fields, but it is also used in epidemiology, [2] business, [3] and other fields. A common definition of SEM is, "...a class of methodologies that seeks to ...
Its standard deviation is 32.9 and its average is 27.9, giving a coefficient of variation of 32.9 / 27.9 = 1.18; In these examples, we will take the values given as the entire population of values. The data set [100, 100, 100] has a population standard deviation of 0 and a coefficient of variation of 0 / 100 = 0
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Since the square root introduces bias, the terminology "uncorrected" and "corrected" is preferred for the standard deviation estimators: s n is the uncorrected sample standard deviation (i.e., without Bessel's correction) s is the corrected sample standard deviation (i.e., with Bessel's correction), which is less biased, but still biased