enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized method of moments - Wikipedia

    en.wikipedia.org/wiki/Generalized_method_of_moments

    In econometrics and statistics, the generalized method of moments (GMM) is a generic method for estimating parameters in statistical models.Usually it is applied in the context of semiparametric models, where the parameter of interest is finite-dimensional, whereas the full shape of the data's distribution function may not be known, and therefore maximum likelihood estimation is not applicable.

  3. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  4. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    An example application of the method of moments is to estimate polynomial probability density distributions. In this case, an approximating polynomial of order is defined on an interval [,]. The method of moments then yields a system of equations, whose solution involves the inversion of a Hankel matrix. [2]

  5. Optimal instruments - Wikipedia

    en.wikipedia.org/wiki/Optimal_instruments

    The answer to this question is generally that this finite set exists and have been proven for a wide range of estimators. Takeshi Amemiya was one of the first to work on this problem and show the optimal number of instruments for nonlinear simultaneous equation models with homoskedastic and serially uncorrelated errors. [ 5 ]

  6. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .

  7. Arellano–Bond estimator - Wikipedia

    en.wikipedia.org/wiki/Arellano–Bond_estimator

    In econometrics, the Arellano–Bond estimator is a generalized method of moments estimator used to estimate dynamic models of panel data.It was proposed in 1991 by Manuel Arellano and Stephen Bond, [1] based on the earlier work by Alok Bhargava and John Denis Sargan in 1983, for addressing certain endogeneity problems. [2]

  8. Generalized estimating equation - Wikipedia

    en.wikipedia.org/wiki/Generalized_estimating...

    The term "variance structure" refers to the algebraic form of the covariance matrix between outcomes, Y, in the sample. Examples of variance structure specifications include independence, exchangeable, autoregressive, stationary m-dependent, and unstructured.

  9. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    The estimator can be derived in terms of the generalized method of moments (GMM). Also often discussed in the literature (including White's paper) is the covariance matrix Ω ^ n {\displaystyle {\widehat {\mathbf {\Omega } }}_{n}} of the n {\displaystyle {\sqrt {n}}} -consistent limiting distribution:

  1. Related searches gmm formula statistics example questions and solutions worksheet answers

    how to calculate gmmem and gmm model
    gmm formulagmm without labels
    generalization of gmmem algorithm and gmm
    gmm parametersgmm wikipedia