Search results
Results from the WOW.Com Content Network
Laurence David Barron FRS, FRSE (born 12 February 1944 in Southampton, England) has been Gardiner Professor of Chemistry at the University of Glasgow since 1998 (now Emeritus). [1] He is a chemist who has conducted pioneering research into the properties of chiral (right- or left-handed) molecules — defined by Lord Kelvin as those that cannot ...
However, this is a distinct phenomenon and is not classified as "optical activity". Optical activity is reciprocal, i.e. it is the same for opposite directions of wave propagation through an optically active medium, for example, clockwise polarization rotation from the point of view of an observer.
An object that cannot be superimposed on its mirror image is said to be chiral, and optical rotatory dispersion and circular dichroism are known as chiroptical properties. Most biological molecules have one or more chiral centers and undergo enzyme-catalyzed transformations that either maintain or invert the chirality at one or more of these ...
These phenomena of specular circular birefringence and specular circular dichroism are jointly known as specular optical activity. Specular optical activity is weak in natural materials. Extrinsic 3d chirality associated with oblique illumination of metasurfaces lacking two-fold rotational symmetry leads to large specular optical activity. [25]
In chemistry, racemization is a conversion, by heat or by chemical reaction, of an optically active compound into a racemic (optically inactive) form. This creates a 1:1 molar ratio of enantiomers and is referred to as a racemic mixture (i.e. contain equal amount of (+) and (−) forms).
Chiral resolution, or enantiomeric resolution, [1] is a process in stereochemistry for the separation of racemic mixture into their enantiomers. [2] It is an important tool in the production of optically active compounds, including drugs. [3]
Atomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions, at the scale of one or a few atoms [1] and energy scales around several electron volts. [ 2 ] : 1356 [ 3 ] The three areas are closely interrelated.
Raman optical activity can be observed in a number of forms, depending on the polarization of the incident and the scattered light. For instance, in the scattered circular polarization (SCP) experiment, the incident light is linearly polarized and differences in circular polarization of the scattered light are measured.