Search results
Results from the WOW.Com Content Network
Since the coefficients are constrained to a single bit, any math operation on CRC polynomials must map the coefficients of the result to either zero or one. For example, in addition: ( x 3 + x ) + ( x + 1 ) = x 3 + 2 x + 1 ≡ x 3 + 1 ( mod 2 ) . {\displaystyle (x^{3}+x)+(x+1)=x^{3}+2x+1\equiv x^{3}+1{\pmod {2}}.}
A cyclic redundancy check (CRC) is an error-detecting code commonly used in digital networks and storage devices to detect accidental changes to digital data. [ 1 ] [ 2 ] Blocks of data entering these systems get a short check value attached, based on the remainder of a polynomial division of their contents.
Computation of a cyclic redundancy check is derived from the mathematics of polynomial division, modulo two. In practice, it resembles long division of the binary message string, with a fixed number of zeroes appended, by the "generator polynomial" string except that exclusive or operations replace subtractions.
By far the most popular FCS algorithm is a cyclic redundancy check (CRC), used in Ethernet and other IEEE 802 protocols with 32 bits, in X.25 with 16 or 32 bits, in HDLC with 16 or 32 bits, in Frame Relay with 16 bits, [3] in Point-to-Point Protocol (PPP) with 16 or 32 bits, and in other data link layer protocols.
Chapter 5 studies cyclic codes and Chapter 6 studies a special case of cyclic codes, the quadratic residue codes. Chapter 7 returns to BCH codes. [1] [6] After these discussions of specific codes, the next chapter concerns enumerator polynomials, including the MacWilliams identities, Pless's own power moment identities, and the Gleason ...
Given a prime number q and prime power q m with positive integers m and d such that d ≤ q m − 1, a primitive narrow-sense BCH code over the finite field (or Galois field) GF(q) with code length n = q m − 1 and distance at least d is constructed by the following method.
A quasi-cyclic code has the property that for some s, any cyclic shift of a codeword by s places is again a codeword. [9] A double circulant code is a quasi-cyclic code of even length with s=2. [9] Quasi-twisted codes and multi-twisted codes are further generalizations of constacyclic codes. [10] [11]
Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).