Search results
Results from the WOW.Com Content Network
Exponential functions with bases 2 and 1/2. In mathematics, the exponential function is the unique real function which maps zero to one and has a derivative equal to its value. . The exponential of a variable is denoted or , with the two notations used interchangeab
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1 . At x = 1 , the value of y equals the base because any number raised to the power of 1 is the number itself.
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
Similar asymptotic analysis is possible for exponential generating functions; with an exponential generating function, it is a n / n! that grows according to these asymptotic formulae. Generally, if the generating function of one sequence minus the generating function of a second sequence has a radius of convergence that is larger than ...
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.
The graph gets arbitrarily close to the y axis, but does not meet or intersect it. An exponential equation is one which has the form = for >, [43] which has solution = = when >. Elementary algebraic techniques are used to rewrite a given equation in the above way before arriving at the solution.
This is a list of exponential topics, by Wikipedia page. See also list of logarithm topics. Accelerating change; Approximating natural exponents (log base e)
Malthus wrote that all life forms, including humans, have a propensity to exponential population growth when resources are abundant but that actual growth is limited by available resources: "Through the animal and vegetable kingdoms, nature has scattered the seeds of life abroad with the most profuse and liberal hand. ... The germs of existence ...